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Abstract

Knowledge of both irrigation-water withdrawal (IWW) and consumption (IWC, i.e. the
evapotranspiration loss of applied irrigation water) is critical to sustainable water use and
management. However, IWW and IWC are not well differentiated and an integrated analysis of
their changes and causes is still lacking. Here we aim to close this gap and investigate the trends and
drivers of IWW and IWC over mainland China using the logarithmic mean Divisia index approach
and multivariate regression and fixed-effects panel regression models. We find that IWW decreased
at a rate of —1.3 km? yr~! (or —0.4% yr~!) while IWC increased at a rate of 2.9 km? yr™!

(or 2.4% yr—!) from 1999 to 2013, albeit both showed upward trends from 1982 to 1999. The
reduction in IWW was due to the decreased water-withdrawal intensity (WWI) (i.e. IWW per unit
area), while the increase in IWC was mainly due to the irrigated area expansion. We find opposite
trends in IWW and IWC in about half of the Chinese provinces, with IWW decreasing and IWC
increasing in most cases. Changes in irrigation efficiency (IE, defined as the ratio of IWC to IWW)
and climatic factors explain a large proportion of the variance in WWI and water-consumption
intensity (i.e. IWC per unit area). IE presents a strong negative correlation with WWI but a positive
correlation with water-consumption intensity. The improved IE makes a nonnegligible
contribution (~20%) to the irrigated area expansion, especially in water-scarce regions. The strong
positive linkage between IE and IWC together with the significant rise in IWC with increasing IE
suggest that the paradox of IE (i.e. higher IE tends to increase water consumption) has manifested
in mainland China. Our findings highlight the importance of considering both IWW and IWC
changes as well as farmer’s behavior adjustments in water resource management.

1. Introduction

Irrigation accounts for ~70% of the global fresh-
water withdrawals while sustaining ~40% of the
world’s food production (Siebert and Doll 2010).
Hence, irrigation plays a critical role in safeguarding
food security for the growing population (Ward and
Pulido-Velazquez 2008) and has great implications

© 2022 The Author(s). Published by IOP Publishing Ltd

for attaining the sustainable development goals set
forth by the United Nations (Xu et al 2020). Nev-
ertheless, in recent decades, irrigation water use
increases significantly due to climate change and
rapid socioeconomic growth, which places unpreced-
ented pressure on our planet’s freshwater resources
(Fishman et al 2015, Rosa et al 2020), leading to
groundwater depletion, wetland and lake shrinkage,
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and ecosystem degradation (Liu et al 2013, Cheng
et al 2014, Khazaei et al 2019, Li et al 2021a). A
great challenge facing politicians and scientists in the
21st century is to increase productivity to meet the
growing food demand while reducing the environ-
mental impact of agricultural system (Foley etal 2011,
Jdagermeyr et al 2017, Rosa et al 2020).

Despite its importance, our knowledge of irriga-
tion remains limited (Koch et al 2020, Nie et al 2020)
because irrigation is not monitored adequately due
to the technical, economic, and political challenges
such as low coverage of metering facilities, scattered
diversion points, high equipment maintenance costs,
farmer resistance to meter installation (Foster et al
2020). Irrigation-water withdrawal (IWW) and con-
sumption (IWC) are two important terms closely
related to irrigation water use, but they are not well
differentiated in the literature (Bretreger et al 2019,
Zhang et al 2019a, Chen et al 2020, Foster et al 2020).
In fact, as shown in figure 1, IWW and IWC have very
different definitions and connotations. IWW refers to
the total amount of irrigation water withdrawn from
rivers and aquifers, and it ends up as: (a) evapora-
tion loss of conveyed water, (b) return flow to water
sources through groundwater recharge or lateral and
surface runoff, and (c) field application (i.e. irriga-
tion water application). Applied irrigation water is
further ended as return flow (Ra), crop transpira-
tion (Tc) and soil water evaporation (Es). IWC refers
to the evapotranspiration (ET) loss of applied irrig-
ation water (Koch et al 2020), i.e. IWC = Tc¢ + Es.
Researchers and managers seem to prefer IWW to
IWC because IWW can be measured directly (Pereira
et al 2012, Batchelor et al 2014). However, IWW
alone may provide misleading information about
water availability (Perry et al 2009, Marston and

Lamsal 2020), as a proportion of IWW can return to
the hydrological system (Simons et al 2015) and be
reused locally or downstream (Grogan et al 2017).
IWC, on the other hand, shows how much irriga-
tion water is fully consumed through ET and can
provide more realistic information on water use than
the IWW on a basin or regional scale (Wu et al 2021).
Hence, IWC has been widely adopted in newly pro-
posed water resource management concepts such as
the water footprint (Mekonnen and Hoekstra 2020),
water planetary boundary (Gleeson et al 2020), and
ET-based irrigation management (Lei et al 2020).

Knowledge of both IWW and IWC is critical
to sustainable water use and management (Berbel
et al 2018, Simons et al 2020). However, an integ-
rated analysis of the changes and drivers of IWW
and IWC is still lacking. To our knowledge, IWW
and IWC are studied separately in most cases, focus-
ing solely on IWW (Brocca et al 2018, Jalilvand
et al 2019, Zhang et al 2022) or IWC (Romaguera
et al 2014, Koch et al 2020, Vogels et al 2020).
In some exceptions, researchers have attempted to
convert IWW to IWC or vice versa using a pre-
defined static irrigation efficiency (IE) (Doll and
Siebert 2002, Hunink et al 2015, Van Eekelen et al
2015, Huang et al 2018, Zhou et al 2021), i.e.
IWC = IWW x IE or IWW = IWC/IE. In these
studies, IWW and IWC have the same spatiotem-
poral variability characteristics, which is at odds with
reality (Malek et al 2018) and may yield misleading
conclusions.

In this study, we aim to address the above gaps
and investigate the trends and drivers of IWW and
IWC at multiple spatial scales of mainland China. Our
intent is to enhance the understanding of changes
in irrigation water use and to answer three key
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questions: (a) What are the commonalities and dis-
similarities between the trends of IWW and ITWC
over the period 1982-2013? (b) What has driven the
changes in IWW and IWC? (c) What is the linkage
between the changes in IE and IWC?

2. Methods and materials

The workflow of this study is summarized in figure 2.
We first detect the turning points within the IWW and
IWC time series using the Pettitt’s test (Pettitt 1979)
and accumulated anomaly algorithm (Zhang et al
2019b), and estimate the trends of IWW, IWC, and
IE using the linear regression model (supplementary,
texts). The trend is defined as the slope of the regres-
sion line fitted to the time series data using the least
squares method. The estimated trend is also expressed
in units of percent change per year relative to the ini-
tial year of the analysis period (supplementary, texts).
According to the definition of the Food and Agricul-
ture Organization (FAO 2011), IE is calculated as the
ratio of IWC to IWW (i.e. IE = IWC/IWW). The driv-
ing factors of IWW and IWC are then decomposed
using the logarithmic mean Divisia index (LMDI)
method (Ang and Liu 2001). Note that LMDI does
not immediately provide insight into the mechan-
ism behind the effects of various driving factors, as
it is a decomposition of effects rather than a causal
model (Zhou et al 2020). Therefore, we further con-
duct the contribution analyses to quantify the impacts
of climatic factors, crop growth, and IE on water-
withdrawal and water-consumption intensity (WCI)
(i.e. IWW and IWC per unit area of irrigated crop-
land), and to isolate the contribution of IE improve-
ments to irrigated area expansions.

2.1. IWWI and IWC datasets

The recently released long-term IWW data (Zhou et al
2020) and IWC data (Yin et al 2020) were used in
the study. The IWW data was reconstructed from
the first and second National Water Resources Assess-
ment Programs and water resource bulletins. The data
is provided at the prefecture scale and covers the
period from 1956 to 2013. The IWC data was estim-
ated from an upscaled ET product (Li et al 2018) using
an irrigation cropland water model that incorporates
irrigated cropland mapping and phenology (supple-
mentary, texts). The IWC data has an 8 x 8 km spatial
resolution and a monthly temporal resolution, cover-
ing the period from 1982 to 2016. The IWC data of
Yin et al (2020) is the first high-resolution and long-
term IWC dataset for China that has considered the
irrigated area changes consistent with the IWW data
(supplementary, figure S2) and allows a reasonable
estimation of IE.

2.2. LMDI-based decomposition analysis
The LMDI method proposed by Ang and Liu (2001)
is used to decompose the driving factors of IWW and

3
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IWC. The additive forms of the LMDI decomposition
of IWW and IWC can be expressed as equations (1)
and (2), respectively:

ATWW = ATWW i area + AIWWyyw1 (1)

ATWC = ATWClyrarea + ATIWCyycr (2)

where AIWW and AIWC are the changes in
IWW and IWC, respectively; AIWWiare, and
AIWWww represent the irrigated area effect and
water-withdrawal intensity (WWI) effect, respect-
ively, and are calculated using equations (3) and (4);
AIWCirarea and AIWCy; represent the irrigated
area effect and WCI effect, respectively, and are cal-
culated using equations (5) and (6):

IWWr —IWW,
ATWW irrarea = ( u u )

In (IWW7) — In (IWW,)
« In (IrrAreaT> 3)

IrrAreag

AW Unner — TWW 1 — TWW,
WWET In (IWW 1) — In (TWW,)

x In <WWIT> (4)
WWI,

IWCr — IWC,
ATWCirprea =
frrAre (ln (IWCr) — In (TWGCy) )

« In <IrrAreaT> 5)

IrrAreag

IWCr — IWC
ATWCwa ( T 0 )

In (IWCr) — In (IWCy)

WCI
«In (W CIO) (6)

where the subscripts T and 0 denote the status at
the beginning and end of the study period, respect-
ively, and they are expressed as a 6 year average to
ameliorate the effects of extreme values, following the
approach of Zhang et al (2020a).

2.3. Regression-based contribution analysis

2.3.1. Quantifying the impact on water-withdrawal
and consumption intensity

This study applies a multivariate linear regression
model to evaluate the effects of changes in climatic
factors, IE, and crop growth on WWI and WCI:

WWI or WCI; = aj P+ o, T+ asH + auR
+asNDVI+oglE+b+e  (7)

where WWI,; and WCI; are the standardized WWI
and WCI, respectively; «; is the regression coefficient;
b is the intercept; and € is the error term. B, T, H, R are
the climatic variables representing the growing season
precipitation (mm), air temperature (°C), specific
humidity (kg kg™!), and solar irradiance (W m™?),
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Figure 2. Workflow of this study. Number and gray boxes indicate the major steps involved in this study. White boxes are the
input data sets or variables and the blue boxes are the analysis tools.

R N I e e S

respectively. Normalized differene vegetation index
(NDVI) is the growing season normalized difference
vegetation index (as a proxy of crop growth) of the
irrigated cropland. These factors are estimated using
the China Meteorological Forcing Dataset (He and
Yang 2016, He et al 2020), the third-generation NDVI
product created by the Global Inventory Monitor-
ing and Modeling System (NDVI3g) (https://ecocast.
arc.nasa.gov/data/pub/gimms/3g.v1/), and the dis-
tribution and growth data of irrigated crops (Yin
et al 2020) (supplementary, texts). Following
Garcia-Palacios et al (2018) and Wu et al (2020), we
estimate the ratio between the parameter estimates of
the predictor and the sum of all parameter estimates,
as shown in equations (8)—(10), to quantify the rel-
ative effects of different driving factors on the WWI
or WCI variations. Further, we tested the sensitivity
of the relative effects to different time frames (i.e.
1982-2013, 1983-2013, ..., 1994-2013) by repeating
the analysis using data starting in 1982—-1994:

4
WWI or Wel, = 2= 1009, (8)

6
i

WCInpyi or WClxpys = 26“7 x 100%  (9)

WCIs or WCIs = — 2%« 100%  (10)

where «; is the standardized regression coefficient of
the ith variable shown in equation (7); and the sub-
scripts CC, NDVI, and IE represent the relative effects
of climatic factors, crop growth, and irrigation effi-
ciency, respectively.

2.3.2. Isolating the contribution of IE improvements to

irrigated area expansion

The expansion of irrigated areas is driven by many
factors including the development of irrigation facil-
ities, growth in food demand, and improvements of
IE (Ward and Pulido-Velazquez 2008, Pfeiffer and Lin
2014, Perry 2017, Sese-Minguez et al 2017). Here, we
focus on the impact of IE improvements on the irrig-
ated area expansion to better understand the link-
age between IE and IWC. To this end, a fixed-effects
panel regression approach is used (Diffenbaugh and
Burke 2019, Davenport et al 2021). A linear regression
model (equation (11)) and two nonlinear regression
models (equations (12) and (13)) are adopted to rep-
resent the relationship between IE and irrigated area
and to account for model selection uncertainty:

IrrArea;; = B11E; + By + ¢ + A + €5 (11)

IrrArea;; = B11E; + BolE: + Bs ¢+ A +eir (12)

IrrArea;; = B1e™% 4 ¢+ N\ +ei (13)
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where IrrArea;; and IE; represent the irrigated area
and irrigation efficiency, respectively, in province ¢
and year t; ¢; is the province fixed effects; ), is the
time fixed effects; and &; is the error term. The
province-time fixed effects subtract out interannual
variations in the average irrigated area caused by
many other unobservable time-invariant and time-
varying factors such as the growth of irrigation
infrastructures, government support, farmers’ pur-
suit of economic returns, allowing us to isolate the
effects of IE improvements. We first estimate the
ensemble mean of the ‘counterfactual’ irrigated area
that would have occurred without IE change based on
the regression models and the detrended IE. Then,
the contribution of IE improvements to the irriga-
tion area expansion is quantified as the relative differ-
ence between the trends of the measured and ‘coun-
terfactual’ irrigated areas (supplementary, texts and
table S1).

3. Results

3.1. Trends of IWW and IWC

The turning points of the time-series IWW and IWC
are detected as 2001 and 1999, respectively, by the Pet-
titt’s test and accumulated anomaly algorithm (sup-
plementary, table S2). Based on the turning points,
we divide the entire study period (P3: 1982-2013)
into two subperiods, i.e. P1: 1982-1999 and P2:
1999-2013. Figure 3 shows the trends of TWW,
IWC and IE estimated using the linear regression
model. IWW and IWC exhibit statistically signific-
ant increasing trends during P1, with values of 1.27
and 1.13 km® yr™!, respectively. However, the IWW
and IWC trends are opposite during P2, i.e. IWW
decreases significantly at a rate of —1.3 km’yr—!
(or —0.4% yr~!), while IWC increases at a rate of
2.9 km® yr=! (or 2.4% yr~!). IE presents a nonsig-
nificant increasing trend during P1 but shows a sig-
nificant upward trend (0.01 yr~! or 2.4% yr—!)
during P2.

For the agricultural zones (supplementary, texts),
as shown in figure 4, both IWW and IWC show
increasing trends in the Northeastern China Plain and
Yunan—Guizhou Plateau during P1, P2 and P3. The
variations of IWW and IWC in the northern arid
and semiarid regions are similar to the entire main-
land China. In the Huang-Huai-Hai Plain, IWW and
IWC show upward trends during P1 but downward
trends during P2, while the opposite is true in the
middle-lower Yangtze Plain. In the Sichuan basin and
surrounding regions, IWW consistently exhibits a
decreasing trend, while IWC shows an upward trend.
At the provincial scale, about 30% of the provinces
have opposite trends in IWW and IWC during P1,
while about 50% show opposite trends during P2 and
P3, with IWW decreasing and IWC increasing in most
cases. Over the period P3, the provinces with diver-
gent trends of IWW and IWC are mainly located in
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eastern and northwestern China. The northeastern
provinces show consistent upward trends in IWW
and IWC during P1, P2, and P3.

3.2. Driving factors of IWW and IWC

Figure 5 shows the effects of irrigated area and
water-withdrawal/consumption intensity on changes
in IWW and IWC, which were decomposed using
the LMDI method (section 2.2). The irrigated area
and WWT have opposite effects on the IWW change
in mainland China. The irrigated area expansion
induces an increase in IWW, while the reduced WWI
causes a decrease in IWW. The irrigated area effect
is higher than the WWI effect during P1 but the
opposite is true during P2 and P3. Similar results can
be seen in most agricultural zones, with the excep-
tions of the Northeastern China Plain (I) and Yunan—
Guizhou Plateau (VII), where the irrigated area effect
is greater than the WWI effect. Regarding the changes
in IWC, the effect of irrigated area expansion is sig-
nificantly higher than the WCI effect. The reduced
WCI exhibits appreciable effects on the IWC change
in the Huang-Huai-Hai Plain (III), Middle-lower
Yangtze Plain (VII) and Yunnan-Guizhou Plateau
(VIII). WCI exerts both negative and positive effects
on the IWC change in different agricultural zones.
At the provincial scale, the irrigated area expansion
contributes positively to the increase in IWW and
IWC in most cases (supplementary, figure S3). WWI
poses negative effects on the IWW change while WCI
exhibits both positive and negative effects on the
IWC change.

3.3. Impacts of climatic factors, crop growth and IE
on water-withdrawal and consumption intensity

Figure 6 shows that IE, climatic factors, and crop
growth (approximately represented by NDVI) are,
on average, responsible for 38% (44%), 54% (46%),
and 8% (10%) of the explained variance (>80%)
in water-consumption (water-withdrawal) intensity
across the 31 provinces of mainland China. The rel-
ative effects remain stable over the different time
frames (figures 6(c) and (d)), indicating the results
are robust to analysis using different data lengths. Pre-
cipitation shows a negative relationship with water-
withdrawal and consumption intensity, while solar
irradiance shows a positive relationship with them.
Air temperature, humility and NDVI do not seem to
have consistent relationships with water-withdrawal
and consumption intensity (Nie et al 2020). In more
than 90% of the provinces, IE is significantly and
negatively correlated with WWI but positively cor-
related with water-consumption intensity. Higher IE
can decrease WWI due to reduced return flow and soil
water evaporation, but it can also increase WCI due to
changes in planting structure or better satisfactions of
crop water requirements (Batchelor ef al 2014, Zhang
et al 2020b). The IE effect on WCI might be par-
tially captured by the satellite-based IWC data that
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Figure 3. Variations of IWW, IWC and IE in mainland China along with their linear trends (solid lines, *P < 0.05, *P < 0.10) and
95% confidence intervals (shaded areas) during 1982-1999 (P1), 1999-2013 (P2), and 1982-2013 (P3).

incorporates NDVI, crop phenology and root depth
information (Yin et al 2020).

3.4. Contribution of IE improvements to irrigated
area expansion

Removing the IE trend and estimating the ‘coun-
terfactual’ irrigation area that would have occurred
without IE trends allow us to isolate the contribu-
tion of IE improvements to the irrigation area expan-
sion (supplementary, texts). The trend of the meas-
ured irrigated area is 6353 km? yr ! (or 1.4% yr~!) in
mainland China, while the trend of the ‘counterfac-
tual’ irrigated area is 4942 km? yr~! (or 1.1% yr—!)
(figure 7). The contribution of the improved IE
to the irrigated area expansion is estimated to be
22.2%, and it is more prominent in water-scarce
regions (31.5%) than in water-abundant regions
(19.7%). This is reasonable because in water-scarce
regions (e.g. the Xinjiang province), land is relat-
ively plentiful, but water resources are limited; the
water-withdrawal savings obtained from higher IE are

more likely to be used to expand irrigated areas than
in water-abundant regions. Our results show a low
sensitivity to model selection and are robust to the
use of different regression models (supplementary,
figure S4).

4, Discussion

4.1. Implications for water resource management

This study highlights the necessity of considering
both IWW and IWC in designing and evaluating
water policies because they include complement-
ary information on irrigation water use and may
exhibit divergent trends. If managers focus solely on
IWW, it would be easy to mistakenly believe that
as IWW decreases, water availability increases and
therefore their water conservation measures are suc-
cessful. Meanwhile, our findings show that climatic
factors can explain a large of the variance (~40%)
in water-withdrawal and consumption intensity. Cli-
mate change may lead to greater irrigation water
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demands that can further exacerbate climate-induced
water shortages and threaten ecological water security
(Russo and Lall 2017, Nie et al 2020), thus requiring
the attention of managers and policy makers.

Since irrigation is the largest global freshwa-
ter user (Hoekstra and Mekonnen 2012, Jigermeyr
et al 2015), it is a widely-held belief that higher IE
has great potential to conserve water and address
water scarcity. However, a growing number of
voices are questioning this viewpoint (Ward and
Pulido-Velazquez 2008, Pfeiffer and Lin 2014),
arguing that higher IE tends to increase water con-
sumption, a phenomenon known as the paradox of
IE (Grafton and Abadia 2018). This study shows that
IWC increases significantly along with the improved
IE from 1982 to 2013 in mainland China; and simul-
taneous increases in IE and IWC are observed in more
than 80% of the provinces (figure 8). The improved
IE makes a nonnegligible contribution (~20%) to
the irrigated area expansion. Meanwhile, in most
provinces, the regression coefficients of IE to WCI
are statistically positive and the explained variance
in WCI by IE is greater than 25% (supplementary,
figures S5 and S6), indicating that the improved IE
has a strong positive effect on water-consumption
intensity. The significant rise in IWC with increasing

IE together with their strong positive linkages provide
empirical evidence for the paradox of IE in mainland
China.

The paradox of IE is an example of a Jevons’ para-
dox rooted in the field of environmental econom-
ics (Sears et al 2018), and therefore it is currently
explained mostly from a microeconomic perspective,
assuming that farmers are rational economic agents
with the goal of maximizing revenues. As shown in
supplementary figure S7, modernization of irrigation
systems can lead to lower production costs through
reduced water, labor, and chemical inputs, as well
as government subsidies for water-efficient irrigation.
Lower costs combined with upgraded irrigation sys-
tems enable farmers to increase yields and economic
returns through the extensification and intensifica-
tion of irrigated crops. This is one possible mech-
anism behind the paradox of IE in mainland China,
since the government plays a leading role in promot-
ing water-conserving irrigation (Central Government
of the People’s Republic of China 2014). For example,
the central and local governments subsidize almost
all investments in water-saving irrigation in large and
medium-sized irrigation districts (The State Concile
Information Office of the People’s Public of China
2014). Meanwhile, upgrades in irrigation systems
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period.

(e.g. from flood to drip irrigation) may increase crop
yields because of more reliable and flexible water
supply and more efficient water distribution, which
is associated with increases in crop water consump-
tion (Perry 2017). This can also explain the para-
dox of irrigation efficiency, since water-saving irrig-
ation measures were reported to increase grain yield
by 10%—40% per mu in mainland China (The State
Concile Information Office of the People’s Public of
China 2014). There are other possible mechanisms
that may generate the paradox of IE (supplementary,
figure S7), but given the various socioeconomic, cli-
matic, hydrological, agronomic, policy and institu-
tional influences, they are difficult to determine in
our study and deserve further investigation in the
future. Anyway, the paradox of IE is essentially a
coupled socio-hydrology problem involving bidirec-
tional human-water feedbacks (Sivapalan et al 2014).
If our goal is to alleviate water crisis by improving
IE, farmer’s behaviors should be treated as an endo-
genous rather than exogenous factor when design-
ing and implementing water conservation programs
(Lietal 2021b); and meanwhile, it is necessary to
impose strict limits on the extent of irrigated crop-
land or total IWW (Zhang et al 2019a).

4.2. Uncertainties, limitations and future
perspectives

We acknowledge this study has some limitations and
uncertainties. First, only one recently released IWC
dataset was used in our study and we cannot eval-
uate the robustness of our results to the use of dif-
ferent IWC data. This is due to the fact that among
the publicly available IWC datasets, only that of Yin
et al (2020) has a long time frame and high spa-
tial resolution and explicitly considers the expan-
sion of irrigated area, and has been verified against
the official statistics. Other available IWC datasets,
including those of Zhuo et al (2016), Van Dijk et al
(2018), and Huang et al (2018), have obvious defi-
ciencies (supplementary, texts). We expect to address
the limitation of IWC data in the future by developing
new IWC products with higher resolution and accur-
acy using reliable satellite-based ET products and
spatio-temporally continuous maps of irrigated crop-
land. Second, our study was limited to the 1982-2013
period due to the constraint of the IWW data.
This may raise the question of whether our findings
remain valid for the period beyond 2013. Recently,
Han et al (2020) reported that IWW showed a down-
ward trend while irrigated area exhibited an upward
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trend from 2013 to 2017 in China. We can infer that
the decreasing IWW trend and increasing IWC trend
would continue after 2013, suggesting the reliability
of our findings over a longer time horizon. Lastly,
shifts in irrigated crop mix may influence the IWW
and IWC trends; however, this was not incorporated
into our driving force analysis due to data limitations.
We further examined the changes in China’s crop-
ping structure during 1982-2013 based on official
statistics and remote sensing-based land use/cover
products (supplementary, texts). As shown in supple-
mentary figure S10, rice and paddy field show very
slight variations in acreage (<2% of the average total
planted area), unlikely affecting the trends of IWW
and IWC. Regarding the non-rice crops, the acre-
age and proportion of corn and vegetables show not-
able increases, their growth rates are relatively small
(<0.4% yr—') compared to the average total planted
area. Other non-rice crops, including wheat, oil crops,
soybeans, tubers, and cotton, did not experience sub-
stantial changes during the study period. The crops
can be both rain-fed and irrigated, but they are not
distinguished in the statistics. It is therefore difficult
to determine their impacts on the IWW and IWC
trends, which may bring some uncertainties to our
findings. Previous study indicated that crop structure
shift is a relatively weak driver of changes in irriga-
tion water demand in China (Zhang et al 2020a), but
they did not distinguish between rainfed and irrigated
crops and excluded some crops (e.g. vegetable) from
their analysis. To quantitatively estimate the contri-
bution of irrigated crop conversion to changes in
IWW and IWG, it will be necessary to develop time-
continuous data on irrigated crop types in the future
by leveraging advances in both crop distribution and
irrigated cropland products.

5. Conclusions

This study differentiated two important variables
closely related to irrigation water use, i.e. IWW and
IWC, and examined their trends and drivers over
mainland China. IWW and IWC showed statistic-
ally significant increasing trends from 1982 to 1999,
while they exhibited opposite trends from 1999 to
2013. IWW decreased at a rate of —1.3 km’yr~!
(or —0.4% yr—'), while IWC increased at a rate of
2.9 km? yr~! (or 2.4% yr~') during 1999-2013. The
decrease in IWW was due to the reduced water-
withdrawal intensity, while the increase in IWC was
mainly due to the irrigated area expansion. The
opposite trends in IWW and IWC are observed in
about half of the provinces, mostly located in eastern
and northwestern China.

Changes in climatic factors, IE and irrigated area,
on average, accounts for 54% (46%), 38% (44%),
and 8% (10%) of the explained variance in water-
consumption (water-withdrawal) intensity across the
31 provinces of mainland China. Unsurprisingly,
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precipitation shows a negative relationship with the
water-withdrawal and consumption intensity. IE is
significantly and negatively correlated with the WWI
but positively correlated with water-consumption
intensity. The contribution of IE improvement to the
irrigated area expansion is estimated to be 22% in
mainland China and it is more prominent in water-
scarce regions (32%) than in water-abundant regions
(20%). Further analysis implies that the paradox of [E
(i.e. higher IE tends to increase water consumption)
has manifested in parts of mainland China. This study
enhances the understanding of changes in irrigation
water use and highlights the importance of consid-
ering both IWW and IWC changes as well as farmer’s
behavior adjustments in water resource management.
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